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Entropy Condition Satisfying Approximations 
for the Full Potential Equation 

of Transonic Flow* 

By Stanley Osher, Mohamed Hafez and Woodrow Whitlow, Jr. 

Abstract. We shall present a new class of conservative difference approximations for the 
steady full potential equation. They are, in general, easier to program than the usual density 
biasing algorithms, and in fact, differ only slightly from them. We prove rigorously that these 
new schemes satisfy a new discrete "entropy inequality", which rules out expansion shocks, 
and that they have sharp, steady, discrete shocks. A key tool in our analysis is the construction 
of an "entropy inequality" for the full potential equation itself. We conclude by presenting 
results of some numerical experiments using our new schemes. 

I. Introduction. The full potential equation is a common model for describing 
supersonic and subsonic flow close to the speed of sound. The flow is assumed to be 
that of a perfect gas, and the assumptions of irrotationality and constant entropy are 
made. The resulting equation is a single nonlinear partial differential equation of 
second order, which changes type from hyperbolic to elliptic, as the flow goes from 
supersonic to subsonic. Flows with a supersonic component generally have solutions 
with shocks, so the conservation form of the equation is important. 

This formulation, (FP), is one of three conservative formulations used for inviscld 
transonic flows. The other two are transonic small-disturbance equation, (TSD), and 
Euler equation, (EU), which is the exact inviscid formulation. The FP formulation is 
the most efficient of the three in terms of accuracy-to-cost ratio for a wide range of 
inviscid transonic flow applications for real geometries. TSD is valid for thin wings 
at free stream Mach numbers near unity, and EU, while the least restrictive, involves 
the most complicated system of equations. 

During the last few years, many numerical calculations using FP have been 
presented, e.g., [19], [14], [17], and [6]. The object of our present investigation is 
twofold. First, we wish to put the theory of nonlinear difference approximations to 
FP on a sound theoretical basis, via an "entropy condition", as described below. 
Second, we introduce a new class of entropy condition satisfying approximations, 
which are, in general, no more complicated to program than the usual density 
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biasing algorithms, and in fact, differ only slightly from them. These new algorithms, 
besides having a solid (nonlinear) mathematical basis, also seem to outperform the 
existing algorithms numerically. 

In 1980, Engquist and Osher [8] introduced entropy condition satisfying ap- 
proximations for TSD. They constructed a scheme, which is a simple modification of 
the commonly used Murman algorithm, [21], and proved that their scheme satisfied 
an entropy inequality for TSD. Murman's algorithm was earlier shown to violate the 
entropy condition, [18], and to have stable expansion shock solutions [8], [29]. In 
[13], Goorjian and Van Buskirk incorporated the E-O scheme into an existing TSD 
code, using only minor coding modifications to change from the standard Murman 
algorithm. For steady flows, the convergence is more robust and about 35% faster. 
For unsteady flows, the allowable time step is around 30 times larger. 

The steady profiles for both methods are very similar, except that nonlinear 
instabilities were triggered using Murman's scheme for a blunt airfoil, while the E.O. 
method converged with no problems. 

For unsteady flows, the new method allowed time steps at least an order of 
magnitude larger, but, perhaps more importantly, one case illustrated the following 
phenomenon. 

The Murman scheme can trigger transient numerical instabilities; although these 
instabilities will not cause calculations to diverge, they will cause large errors in the 
pressure profiles. Many users of these codes, such as aeroelasticians, are particularly 
interested in integrated quantities such as the unsteady aerodynamic loads. These 
users could be unaware of these large errors, unless they monitored, in addition, the 
calculation of the pressure coefficients. 

Additional experiments were performed using the E.O. algorithm for TSD by 
Edwards, et al. [7]. There. they were able to calculate large amplitude motion and 
large angles of attack. Thus, transonic flutter solutions, which could previously not 
even be calculated using existing production codes, were obtained, and found to be 
quite accurate. 

A great deal of nonlinear analysis has recently been used to analyze and construct 
conservation form approximations to hyperbolic systems of conservation laws, e.g., 
[23], [16], [24], [25], and [28]. Several successful "high resolution" schemes for EU 
have been constructed, and complex flows with strong shocks have been computed: 
[4], [16], [2], and [23]. This type of analysis is not directly applicable to FP, for 
reasons described in Section II. 

The format of our paper is as follows. Section II is purely analytic, i.e., non- 
numerical. There, after a preliminary description of the properties of FP, we discuss 
the concept of the entropy condition, and construct a new entropy condition for FP. 

[Note added in proof. We have recently learned that the entropy condition, 
(Theorem 2.1) below, was first obtained (using a different method) in [26]. We are 
grateful to the authors of that work for bringing this to our attention.] This inequality 
is enforced across a shock for FP if and only if the usual criterion of Mach number 
decreasing across a shock is valid: Theorem (2.1). We also explain why these new 
ideas are needed, i.e., lack of strict hyperbolicity for the unsteady FP. In Section III, 
we construct difference approximations for FP based on the concept of E schemes, 
introduced in [22] for scalar conservation laws. We show rigorously that these 
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schemes admit only physically correct limit solutions to FP (Theorem (3.1)). In 
Section IV, we give examples of our new class of approximations involving the E.O. 
scheme, Godunov's scheme [11], and general fixes of Murman's scheme [29]. The 
concept of flux biasing is presented, and shown to be simpler computationally than 
the usual density biasing, as well as having the same truncation error. This section is 
the most important for our more applied readers, because the algorithms are 
presented there. Section V contains the proof of Theorem 3.1 by obtaining a discrete 
version: inequality (5.3). Finally, Section VI gives the results of numerical experi- 
ments showing the worth of the algorithm, based on E.O., in body fitted coordinates. 
We shall call this version the Hafez-Osher, or H.-O. algorithm in a parallel work, 
[15], where more numerical evidence is given, and in future work on this subject. 

Some earlier attempts have been made to extend the ideas of [8] from TSD to FP. 
See Goorjian et al. [12], and Boerstoel [1]. Indeed, Boerstoel used flux biasing to 
construct an algorithm for FP in general coordinate systems, formally extending 
E.O. from TSD to FP. 

II. An Entropy Inequality for the Full Potential Equation. We consider the 
differential equation 

(2.1) (Pu).x + (pu)y = 0 
where the density, p > 0, is defined through Bernoulli's law 

2 
a2 1 

(2.2) q + a- 1 1 2 
2 y YI M0(y- _1) 2 

Here 

q = lu2+ 2 < qmax I + ( l 
2 a 

are the absolute speed and sound speed, respectively. 
The constants 

-y = 1.4, Moo > O 

are given. 
The flow is potential, which means there exists a scalar function D, with 

(2.3) u= yX v = y 
and 

(2.4) uY= vx 

even across discontinuities. 
(2.1)-(2.4) yield a hyperbolic or elliptic equation, depending upon the Mach 

number M = q/a. We have 
M > 1 supersonic flow hyperbolic, 
M < 1 subsonic flow -* elliptic. 

It turns out that 
(2.5) M> 1 q>q*=a* 
with the sonic value 

* / MO2 (Y 1)/2 
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We wish to solve (2.1)-(2.4) by obtaining it as the steady (time-independent) 
solution to an unsteady hyperbolic system of conservation laws, endowed with a 
convex entropy, in the sense of Lax [20]. This entropy is not to be confused with the 
true, physical, entropy of gas dynamics, and will be described below. 

Such a system can be written as 

(2.6) w, + f(w). + g(w)y = 0, 

where 

w = (wd,. ,Wd) , f = (f(w), ,fd(w)) T, g = (g1(w),... gd(w))T 

The Jacobian matrices 

A= (afi, B= agi) 

are such that any nontrivial real linear combination of A and B has real eigenvalues 
and a complete set of eigenvectors. 

Many of the equations of physics of this type are endowed with an additional 
convex conservation law. This means that there usually exists a scalar, convex, 
function V(w), which, for smooth solutions w of (2.6), satisfies 

(2.7) Vt+FX+G =0. 

V is called the entropy, and F, G are the associated entropy fluxes. 
For a list of physical equations and corresponding entropies, see [5]. 
Nonsmooth weak solutions of (2.6) are not unique. We require, in addition, that 

they be the limit, as E I 0, of solutions to the regularized equation 

(2.8) Wt[ + f(We)x + g(we)y = E(WXX + Wyy) 

Lax has shown, [20], that a necessary condition for this to be true is that the 
entropy inequality (in the sense of distributions) 

(2.9) Vt + Fx + G < 0, 

be satisfied. 
We now assume that A has distinct eigenvalues 

(2.10) O(w) < X2(w) < ... < Xd(w), 

with associated right eigenvectors rj(w),...,rd(w). A characteristic k-field is called 
genuinely nonlinear if 

(2.11) VWXk rk # 0 

for all w. 
Suppose the weak solution to (2.6) is piecewise conlinuous with a point of 

discontinuity. We denote by wL, wR, the values on the left respectively right, sides of 
the discontinuity. Such a point of discontinuity is a k-shock if both 

(a) The Rankine-Hugoniot relation 

(2.12) S(WL - WR) = f(WL) f(WR), 

for s the speed of propagation of the shock, holds; and 
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(b) there are exactly k - 1 of the characteristic speeds X,(wL) < s, and d - k 
speeds X,(wR) > s, 

(2.13) Xk_l(w ) < s < Xk(w'), Xk(w ) < s < Xk?l(w ) 

This is the (geometric) shock condition for systems. Lax [20] showed for genuinely 
nonlinear characteristic fields, that, for weak k-shocks, the shock condition is 
equivalent to the entropy inequality, which in this case becomes 

(2.14) S(V(WL) - V(WR)) - F(WL) + F(WR) < 0. 

We shall use this apparatus to solve (2.1)-(2.4). A first attempt might be to 
consider the unsteady full potential equation 

(2.15) pt +(pu)x +(pu)= 0 

together with the unsteady Bernoulli equation 

2 + 2 a2 
(2.16) 2 +v + 1 a t k(t). 

Taking the space gradient of (2.16) leads us to a system of three conservation laws 

pu 

(2.17) + (u2 + v2) + a2/(y - 1) 

((U2 + V2)2a2/(y 
- 1) ) o 

Unfortunately, this system is not strictly hyperbolic. The eigenvalues of the matrix 

At + B7, 

for , 'q real, with t2 + q2 = 1, are iu - a, 0, and iu + a, for 

u= =U + V7Q. 

When u = a, or u = -a, the resulting matrix is not diagonalizable. This means, 
computationally, that any numerical vorticity which develops, will necessarily gener- 
ate a numerical instability. This causes problems for numerical methods based on 
this approach [3]. 

Instead, we consider the following system, motivated by [29], 

(2.18) -pt = (pqcos O)x + (pqsinO) , 0t = -(qsin0)x +(qcos0)y, 

where -,< < 6)< g is defined through 

(2.19) u = qcos O, v = qsin0, 

and p = p(q) is defined through Bernoulli's law, (2.2), 

(2.20) p = (1 - 2 M2(q2 -1) 

with 

(2.21) dqP = pq < 0. (2.21) 
~ ~ ~ dq a2 
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Thus -p is an increasing function of q, and vice versa. 
If we write (2.18) as 

(2.22) EWt + AWx + BWY = O 

with 

then 

a2 0 -A= [ ( )) s -pq sin0 

E=~~-B a -A a2) 

-B p - 
2 

~sin 0 pq cosO 1 

-B - cos O -q sin j 
If we then multiply (2.22) by the diagonal matrix 

1 01 
pq, 

the resulting system is symmetric hyperbolic. This matrix is the Hessian of the 
convex function 

P(q) + 102 with P"(q) = ( 2 1(q) 
=p (q) q_ 

Using the results of Friedrichs and Lax, [10], we can then show that system (2.18) 
admits another conservation law: 

(2.23) a V(q 0)+a- (q(Osin +cosO)(-q (1) ds)pqcosO) 

+ a(q(-Ocoso + sinGO) ($ q) 1ds)pq sin) = 0 
ay( ( q P(S)s ) ) 

Here 0 < < qm is an arbitrary constant, and 

(2.24) V(qO) =O2 + f0p(I)Idf | ds. 

To apply the above theory, we need V to be convex as a function of -p and 0. This 
requires the inequality 

pq aq pq aq [q a (( ) Iq P(s)s ] 

a2 a q ds a2 

pq q q p(S)S p2q2 

which is always valid. 
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Next, we consider plane wave solutions to our system (2.18), of the form (for fixed 

qp between -7T and 7T) 

(2.26) w =f (x cos ' + y sin (p - st). 

The resulting matrix 

E -1(A cos qp + B sin (p) 

has distinct eigenvalues 

(2.27) X cs - )1 - 2M2) cos (O- ) + sin2(O-p) ] 

Suppose we have a steady solution to (2.18) having a discontinuity at x cos p + 

ysinqp = 0. 
Denote by (qL, 0L)' (qR, OR), the left and right constant states and let 

UL = qLCOS(OL - p), VL = qLsin(OL - ), 

and similarly for "RI VR 

The jump conditions become 

(2.28) VL VR V, P(UL, V)UL =P(UR, V)UR 

We are seeking steady, weak, shock solutions, locally of the form (2.26), so we 
consider points where an eigenvalue X- or X+ vanishes. At such points, since 

X+AX= a2(M2cos2(O -p)-1) 

we must have 

m~~~ 
Icos(O -m) I 

We must check genuine nonlinearity of the field corresponding to this vanishing 
eigenvalue, X. 

The quadratic equation satisfied by each root is 

A2_ + ?[(1 - 2M2)cos(O _- )] + q(M2cos2(O - p) - 1) = 0. 
q 

Differentiating with respect to q and 0 at this point yields 

q cos(O-_ -aM21aq cos(O - p) [2M2 + (y - 1) M4] 

sq (2M2 - 1) (2M2 - 1) 
- 2qM2 sin(O - 9p) 

1-2M2 

We must check to be sure that [Xq9 X0IT= 1T is not orthogonal to the null 
eigenvector of 

-E L[AcosO + Bsin9p] = ((1 - M2)cos(O -9p) -a2sin(O - ,)] 

L -sin(O - 9p) -q cos(O - p) J 
at this point. 
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We may take this eigenvector to be 

[qcos(O - (p), -sin(O - (p)] T rT. 

A simple calculation yields 

(2.29) lTr = qyM2/(2M2 -1) 0 0 

Thus, the Lax k-shock condition is valid here. This means that (2.28) is valid, and 
that X(iL, v) > 0 > X(OR, v) 

If UL, UR > 0, then it is X which is the relevant eigenvalue, and we have from 

(2.27), (2.29): 

iL2/a2> 1. 

Thus, we have, in this case, 

(2.30) (a) UL/aL> 1. 

Since 

ap(U, )U = -p(l - M2) 

changes sign for positive u iff u = a, there exists exactly one positive root tUR of 
(2.28) and it satisfies 

(2.30) (b) 0 < iR/aR < 1. 

The criteria (2.30) (a), (b) are the usual physically correct ones for shocks 
satisfying (2.1)-(2.4). 

If F L, R < 0, then it isX A which is relevant, and we have from (2.27), (2.29): 

42l/a2> 1. 

We arrive at, as above, 

(2.31) ~ ~~(a) 0 < -UL/aL < 1 

(2.31) (b) -uR/aR > 1, 

which is, again, the usual physical restriction. 
We have thus proven 

THEOREM 2.1. Solutions of (2.1)-(2.4), having weak shocks, satisfy the inequality 

(2.32) 1a P(g sin +cos )- 
q 1 

ds pqcoso) 

+ a-(q(-ocoso + sin@) - (@ )5ds )Pqsino) < 0, 

iff the shocks are physically correct in the sense of (2.30), (2.31). 

Ill. A Class of Entropy Condition Satisfying Approximations. Now we shall 
construct difference approximations to (2.1), (2.4) whose limit solutions satisfy 
inequality (2.32). Thus, these limits have only physically correct shocks. A wide class 
of these schemes will be constructed. They can be programmed using only simple 
(and simplifying) changes from existing codes which use density biasing. Ours will 
use flux biasing. In addition to satisfying the entropy conditions, the schemes will 
also have monotone, sharp, discrete shocks, as explained in Section IV below. 
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We set up a grid 

Xj = jAx, Yk = kAy, j, k = O, +1, +2, 

and seek a grid function 

'jk- 4(jAx, kAy). 

Let 

(3.1) ' k 'jk -1,-k ' Dij+, k- jk 

define the backward and forward difference operators, with 8 8 defined analo- 
y' y' 

gously. 
We also define the operations 

A'= max(A,O), A= min(A, 0). 

On the grid, we let the absolute speed be defined through 

(3.2) q= ) 
) (_ ) ) ) 

We then use (3.2) to define p, a, and M on the grid. 
Next we consider a numerical flux which is a Lipschitz continuous function of two 

variables h(ql, q0) which is consistent with the function -pq, i.e., 

(3.3) h(q, q) -p(q)q, 

and which satisfies the inequality 

(3.4) sgn(q1 - q0)[h(qj, qo) + pq] < 0 

for all q between (qo, ql). 
Such numerical fluxes are building blocks for "E" schemes, and were introduced 

by the first author in [23]. They include monotone schemes as special cases. In our 
context, h (ql, q0) corresponds to a monotone scheme if it is nonincreasing in its first 
argument, nondecreasing in its second. In the next section we give examples of these 
concepts, together with comparisons to density biasing algorithms. If h is a mono- 
tone flux, then for q between qo and ql, 

(3.5) sgn(q1 - q0)[h(qj, qo) + p(q)q] 

- sgn(q1 - q)[h(qj, qo) - h(q, q0)] 

+sgn(q - qo)[h(q, qo) - h(q, q)] < 0; 

hence h is an E flux. 
For any such flux, our algorithm approximating (2.1)-(2.4) is 

(3.6) 0 = 
q [-h(qjk, qj-lk)]] + +[ q [ h(qjkS qI?1k)]] 

We net mirehcasminbfroq d[ eh(qjks qj,k-1)] +Y t q [ r 

We need two minor technical assumptions, before stating our main theorem. 
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Assumption (3.1). As Ax, Ay -? 0, 8,A4 is always of one sign in a given region 
2 c R2, and 84 is always of one (perhaps different) sign in this same region. 

Assumption (3.2). The oscillation 

sUpIAxSAx8xI + supIAy8y8y4D + SUp(Ax + Ay)(I&MAyi) 

is sufficiently small, as Ax - 0, Ay - 0 in Q (i.e., discrete shocks are weak). 
Given these two assumptions, we can now state 

THEOREM 3.1. Suppose { 4jk } is a solution to (3.6), and jk IxDjk and 3y)jk 

converge boundedly a.e. in Q to 4), 4U, and 4'y, respectively. Then, in Q, 4) is a weak 
solution of (2.1)-(2.4), which satisfies the entropy inequality (2.32). 

IV. Examples Based on "E" Approximations. In this section we shall give examples 
of schemes of the type (3.6), where the function h is an E flux. We shall compare 
these flux biasing algorithms, with the density biasing methods of [6], [14], and [17]. 

Example (1): The Engquist-Osher scheme (E-O). In order to construct this algo- 
rithm here, we note that 

(4.1) d (-pq) =p ( > 0 iff M > 1, 

= -P 1 <0iffM <1. 

However, 

M> 1 q> q* =a* - +(y - 1)/2 
(y + 1)72 

and 

p(q*) = p* ( 2 -Y-1M ((a*)2-1))1/ 

We define the function 

(4.2) (pq)_O if q < q* M < 1, 
(pq) pq-p*q* if q>q* MM>1. 

Finally, we set 

(4.3) -hEo ( qjk qj-1k) = Pjkqjk X Pjkqjk)_ 

It is easy to see that this flux is monotone. In this case our scheme becomes 

(4.4) O = x[ q K 
[pq - AxA'(pq)] + [ q [pq + Ax'y(pq)-]. 

+ 8y[ 
) pq -Ay' (pq)_]]+ [Yq) [pq +Ay' (pq)_. 

In the subsonic case, this scheme is merely conventional central differencing (and 
is second-order accurate, modulo a simple change in the definition of p). However, 
we bias the mass flux pq, rather than p, to achieve our upwinding. We also obtain a 
simpler algorithm in the supersonic region, as will be shown below. 
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Example (2): Godunov's scheme [11]. The precise definition, [23], is 

(4.5) -hG(qjk qj-1,k) = max p(q)q if qj-lk <qjk, 
qj-1,k <q-1-qjk 

-h G(qjk, qj-1k) min p(q)q if qj-lk >qjk- 
qj-1,k > q> qjk 

It is enlightening to discuss the physics behind this. The flux is constructed by 
solving the Riemann initial value problem 

(4.6) -Pt-(pq)x=0 

for t > 0, with initial data 

q(x, O) -qj-l,k if x < 0, 

q(x,0) qjk if x > 0. 

One obtains the unique, physically correct (entropy condition satisfying) solution, 
which is of the form q(x/t). One then evaluates p(q)q at x/t = 0. 

Then 

(4.7) -h G( qjk, qj-1,k) = p(q(?))q(?). 

Now 

(4.8) dj;2(-P(q)q) )= M2( M2 ) 

Thus, -pq is convex as a function of -p. 
This yields a simplification of (4.5): 

(4.9) hG(qjk, qj-1,k) = hE(qjk, qj-1,k) 

unless 

(4.10) qj-l,k > q > qjk* 

We then compute the shock speed 

(4.11) Sj-1/2,k = Pjkqjk - Pj-l,kqj-l,k 

Pjk 
- 

Pj --1, k 

and define, in this case, 

(4.12) -hG(qjk, qj - ) Pjkqjk + 
Pj-l,k' 

qj-l,k 
+ 

1 
1 

j1 
1( ) 

2 2jS12k(j 

P]-l,kqj-l,k if sjl1/2,k > 0, 

Pjkqjk if Sj+1/2,k < 0. 

Inserting this into (3.6) gives us the corresponding approximation to the full 
potential equation. 

An equivalent formulation giving us Godunov's flux in all cases is 

(4.13) -hG(qjkI qj- 1,k) = the expression in (4.12), 

unless qj-1, k < q* < qjk, in which case 

-h G(qjk, qj-1,k) = q 
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Godunov's is the ultimate E scheme (see [23]). However, the Engquist-Osher 
scheme is simpler to program, and has C1 flux functions, while Godunov's flux has a 
jump discontinuity in derivative at sonic shock points. 

Formula (4.12) is precisely the algorithm for Murman's conservative upwind 
scheme, devised in [21], for the small disturbance equation, with -pq replaced by 
(y + l)p2/2 + kp, k a positive constant. This method does not yield an E scheme, 
and admits stable expansion shocks. Transonic small-disturbance calculations using 
E-O, [13] and later Godunov's method [12], were found to be much more robust and 
reliable than those using Murman's algorithm. 

Many other fixes for Murman's algorithm have been recently devised, e.g., [16], 
[29]. They are typically of this type: Define h as in (4.12) unless qj1lk < q* < qjk 

i.e., at a sonic rarefaction. The flux will generate an E scheme if one defines, in this 
case, h to satisfy 

(4.14) h(qjk, qj-1,k) < -p-q = hG(qjk, qj-1,k). 

Many other possible E schemes exist. However, each method we have described 
here has the following properties: 

(a) The scheme is fully one-sided, i.e., 

h(qjk, qj-1,k) -Pjkqjk if qjk, qj-1,k < 

-Pj-l,kqj-l,k if qjk, qj-l,k > q*. 

(b) One-dimensional steady discrete shocks are exact except for one transition 

point for any of the above-mentioned E schemes, except for E-O, which has two 

transition points. The extra point follows because of E.O.'s smoother flux function 

(see [9]). 
This means if OI(x, y) - (x), with, say u = cpx > 0, defining a steady shock 

u-u for x < 0, 
u-uR for x > 0, 

with ML > 1 > MR, then for all the above methods except E.O., we have as discrete 
solutions to (3.6): 

UX- U L, j < O, 
UL, U<L 0 u> U O> uR, u0 otherwise arbitrary. 

u1-- u, J>0, 

For E.O., we have 

U.- uL j < O* 

Ji 

= 
L 

> Uo> q> R1>U 

uj uR, j>1, 

with p0uo + p1u1 PLUL + p*q*. See [9] for analysis of this, and for some results in 
two dimensions. We also conjecture here that two-dimensional supersonic-subsonic 
discrete shocks are monotone, and exact, except for a finite number of grid points, 
for any of the FP algorithms mentioned above. 

Thus, we have the desirable properties of programming simplicity, sharp discrete 
shocks, dissipation of expansion shocks, and, with E.O., smoothness of flux func- 
tions. This last property helps in accelerating iterative methods to convergence [15]. 
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Density biasing algorithms for E.O. have been in use for some time, e.g., [6], [14], 
[17]. We now compare the x differencing in the algorithms of [6], [14], [17], with that 
of (4.4). Using E.O., we have (if 8XOD > 0 for all relevant points) 

Density Biasing. 

ax[ ,8x?ZDaa pu. 

with 

Pj+l,k = Pj+l,k Vjk(Pj+l,k Pjk), jk = max[O0 1 - ~ 2] 

for Mjk some representation of the local Mach number. 
E.O. Flux Biasing. 

ax[ j+ 1, k8 

with 

= PJ?1,k [(Pj+ 1,kqj+ 1,k) (Pjkqjk)_ 
Pj+ l,k =Pj+ l,k q+l, 

qj?l,k 

Taylor's theorem shows the equivalence of p- and p up to terms of order 

(Ax8xqjk)2. If centered differences are used in the definition of u and v in qjk, they 
both yield the identical subsonic second-order accurate differencing. In supersonic 
regions, the algorithms are quite different. 

Density Biasing. 

8X - | M2 1 2k ]8 xl Mj [ ?MA ) iJ3D) 

E.O. Flux Biasing. 

I Pjkqjk) ) 

We again emphasize that our simpler formula differs from the density biasing one 
as follows: 

P +l, + Pjk = Pjqj + O(AX)2. - 
2 ( M 2k qj+l1, k 

It is perhaps amusing to show this in detail. Dropping thej, k and - dependence, 
we have 

P + M28XP = p + Mk( C2)Axqx + O(Ax) 

= p - -Axqx + O (Ax)2, 
q 

while 

pq p pAx8xq p _ P Axq + 0(AX)2 

q(x+ tAx) q(xt+ Ax) q 

Thus, the two expressions agree up to O(LAX)2. 
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V. Proof of Main Theorem. We shall prove a discrete version of inequality (2.32). 
Let the four terms in (3.6) be defined by 

[I] + [II] + [III] + [IV] . 

By Assumption (3.1), one of the first two, and one of the last two, terms is zero. 
Define, in the nonvanishing terms, 

cos O' = , sin O" - Y 
q q 

cos O", = ,x sin OIV =Y_ 
q q 

In all cases, we can uniquely define the relevant OI, 91I, 91II, or O". For example, if 
the region Q is such that 

Sx > 0 > SY 
then 

(5.1) al =I sinx ) .-( Y 

where, in this case, 

q=~~~~~~) q =W(Dx)2 +S (Dy 

In general, we let 

(5.2) X (y -- 1 if It ~> O, x(yI) _ if It < O. 

We shall derive the following discrete inequality: 

[x S (D Jr ds s) q _( qjk qj -l, k ) 

+ ( 
ds 

( 

0 
h (qj-l,kqjk) q p(s)s /qj-l,k 

+ X (COS 0') )(qj -1 ksinXj(o1sk)() l 

+(1 -X (COS 0 )( qjksin A"k) a-l k] 

(5.3) ___ 

+ muJli (3.) by __ 
(qj,k)1) qjk) 

eX (sin x s qjo kn-oCOS tie lt i 

-( 1 - X (sin ) ) (qjkcos Ojkv ) Ojv V- 1 |< ? . 

The Lebesgue dominated convergence tneorem will then give us (2.32). Moreover, 

the Lax-Wendroff theorem [301 implies that the limit is a weak solution of (2.1)-(2.4). 

We prove (5.3) by multiplying (3.6) by fqq(11p(s)s) ds and adding it to the 

expressiononfthe left i-n (3.3). 
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We first consider 

Jq P(Ss ds x q (-h (q, qj l,k,)) 

+^ x[q q + Jq (S) ds X h q, qj-,,k) 

(DXI) 
(jqJ+l,k 

hs h(qj+l ks q) 

(5.4) qj+l1k P (S)S x 

+ 
qj+, Sxq + qgxt q 
q1(D qk lq d 

( 
8 

) ( Ji+i,k ds (h (qj+lk, q) + p(s)s)) + q 
( ( q)) 

qj?l,k ~\q p(s)s J X\ q ] 

q& ( q ) = qX (cos ) )x (cos 0') 

(since h is an E flux). 
Now we add 

X(Cos 0 )8x((-skinojj-1, k) 0I) 

to the above, arriving at 

qX (cos )[Xcos O' + (sin O') ] + X (cos')O x[ q sin O'] 

q o( cosG -x0O') - 1) 

+qxcos Ol)(siSX)88 i(Xxl 

X (CosS 0)@ 0x [ qsinS 0] 

< X(COS ')0'&x [qsin o'] if lAx3'O'I is sufficiently small. 

Next, we consider 

Y qs Y i 
_ 

( h(qjk qj,k-1j ) | 

q P(S)s L (q)s 
+ Sy Fq q - + P )s ds - 

q h( qjk S qj,k-1) , 

(5.6) _6D ) _ q__ h(qj,k+l, qjk) 

qj+l,k qjk P(s)s Ay 

+ + _ 
yqjk qjkVy( q ) 

qj?l,k q 

< qjkX(sino"I)3 (sin o0), 

(again using the fact that h is an E flux). 
We now add 
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to the above, arriving at 

qX (sin 9I 
( ,( sin II CO cs III9-,II) - x (sin III) III- 

(q cos 911) 

SY SY )S( Y 

q ~Isin(9"I "')I S(Y -"' - i) + q(x sin9O"') 

(5.7)~ ~ 
sin 

11)( 
A 

Y-Y 11)- 1) 

- X(sinoIII)9III, (qcos III) 

< -X (sin 111) "'II ( q cos 9"') if I A y9 'II is sufficiently small. 

Third, we consider 

J~q P(5)5 d x qjk (h (qjkl qj+l,k))) 

+ x 
q 

p(s)sds X h(qjk, qj+l,k) + qjk q j 
P(S)s qjkqj 

qfjk ds 1 
x1,k 

( x1 ) h ( qj _ , k I q jk ) p ( S) S~ qj l,k 

(5.8) + 4 q +k ( q ) 
q1-1k_ 

+ q,kx 
qjk/ 

jx qk qI-k 
P 

ds(h(qjfl,k, qjk) + p(S)S) 

+ qjk8x 
( 

qj ) 

< qjk (-1 X (COS 0 I) ) 8 (COS 0 ) 

(using the fact that h is an E flux). 

We now add 

(1 - X (cos ))0x(qsin 0I"j'l,k) 

to (5.8), arriving at 

(i X (cos 0 )) q [(cos 0 II) + (sin " II' )II 

+(1 - X(COS0II))0II(' (qsino0")) 

I( 1 - COS(AX0 )) 

--qlcosO" IIIsnAx~" 

- (1-X(cos 0"))(sin 0 () (x Ax ) 

(1 - X(Cos 0)) 0II, (q sin ) 
< (i1 - x ((cos 0 II)) 0 II" (q sin 0") if I Ax8xO"I is small enough. 
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Finally, we consider 

Iq s j p hSY|q [h(+qjkq qj,k+k)] 

(5.10) L1q P(s)s qjk qjk 

1 ds [h(Jkl, qI) + p(s)s] + qjk~( ~i 
q1 k- 

| 
P(S) 

ds 
qj [h(qj,k-1k q / 

< qjkSy( q ) = q(l - X(sinOIv))8y(sinOv) 

(for the usual E flux reason). 

We now add 

-(1 - X(sin aIv)) ay(( qjk COS0V)0j'k~-1) 

to (5.10) arriving at 

(1 - x(sin OIv))q [y sin 0"'-(cos 0"')? 8I"] 

-(1 - X (sin OIV)) 0IVSy (q CoOSV) 

V (1 - cos(Ay- 0"V)) 

(5.11) Ayqsm 

+ (1-X (sin 0 lv)) cos v( sin( SY ) -8 IV 
Ay ) 

-(1 X (sin 0'v)) ty(qcos OIv) 

< -(1 - X(sin(0v))OItY(qcos 0'v)) if IAy8,,0"'I is small enough. 

Adding (5.5), (5.7), (5.9), (5.11) gives us (5.3) if we can prove 

(5.12) X (cos 0') O' , (q sin 0 I) - x (sin 0'I') 0 III"8 (q cos 0 II') 

- ( (Cos 0 ")) 0 "I (q sin0 "I) -(1 - X (sin 0W)) 0IX (q cos OW) 0. 

We show this by considering four cases: 
(1) cos I > 0, sin0 "' > 0. 

This implies that 01 = 0III and q sin0 I = 8y4, qcos 011 = 

(2) cos aI > 0, sin O'v < 0. 
This implies that O' = OlV and q sin o' = 8y4, qcos 8'V = 

(3) cos 0 " < 0, sinOI"I > 0. 
This implies 0 " = 0111 and qcos 0I = ), qsin 0"II) 

(4) cos 0" < 0, sinO'v < 0. 
This implies 0" = 0'v and qcos0 IV = AX?D q sin 0" = y. 

In all cases, Eq. (5.12) is now easily verified. 0 
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VI. Numerical Results and Computational Comments. In the previous sections, we 
considered the scheme approximating (2.1)-(2.4) in Cartesian coordinates. Real 
computations involve body-fitted and in general, nonorthogonal coordinates. For- 
tunately, our schemes transform quite simply under such coordinate changes, even in 
three space dimensions. 

Given a change of variables, we proceed as follows: Let 
D = O(X, y, z), n = q(x, y, z), ( =(x, y, z). 

The potential equation becomes 

(PJ ) +( J +(P 0 J o. 

For simplicity of exposition, we define 
U= U1, V= U2, W= U3, 
x = x1, y = X2, Z = X3, 

g= Xi, = X2, (= X3. 

Here 
3 

Ui =Laij4)x, i =1,2,3, 
j=1 

with 
3 aX aXj 

aij = k aXi ax ji, 1, 2,3, 

ai1 =ff*, 

P= [1-Y 2 0( Xi + U2 X2 + U3 X3- 

- [1- 2 1Mo(q2 -1)]_ 

3 

q 2= L 4 
XI aij4x,j 

i,j=l 

a(xl, x2, x3) (ax,' t = det '~det[f] 
a(Xl,X2, X3) \ax> 

We proceed numerically as follows: 
Approximate 

3 3 

q2E (S<-x,ft?))aij( 8x,? )D +E (S8x,? ) aij ( 8*x,?D 
i,j=1 i,j=1 

This defines q, p, and a on the grid. 
Let q*, p* and (pq) be as before. Tlhen, the basic space differencing for a given E 

flux is 

(6.1) a1 (PU) aa(PU) [(4X?) ( 

Th8 XI aJn X d fench(qjklg qj+lkal)]a s 

rThe V A Vn 3dfeecn saaoos 
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:1 * Shock 

(Ps )x2= 0 

FIGURE 1 (a) 

Typical one-dimensional flow 
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FIGURE 1 (b) 
Calculation of one-dimensional compression shock 
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x 

FIGURE 1 (c) 

Elimination of one-dimensional expansion shock 
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If we use the E.O. flux, we have 

a /pU \_ alpU\ 
(6.2) ax1 j ) aVJ) 

8 |' a Ali~j.) aj [pq_+ AXl8x(pq]. 

+8 [,= lJ X pq - Axsaxl(pq)-] 

The X2 and X3 differenCing iS analogous. 

-.8E 

-~~~~~~ .6 4_ 

- .2 h 

.6_ 

*0 _~~~~~~ 

1.oL0I I 1 I I I I 
-2.5 -2.O -1.S -1.0 -.5 0 .S t.O 1.5 2.O 2.5 

X 

FIGURE~ 2 
Pressure distribution on an NACA 0012 at M = 0.85 

and 0 degrees angle of attack 
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We first perform a simple test calculation by solving the one-dimensional FP in 
two cases. First we input boundary conditions which should produce a valid 
compression shock, and take an initial guess which has to move to the correct steady 
state. We use Newton's method directly and get convergence in 39 iterations, as 
shown in Figure l(b). 

In Figure l(c), we reverse the boundary and initial data, eliminate the expansion 
shock, and converge to the correct steady state in 21 iterations, again using Newton's 
method. 

In Figure 2, we solve FP in two dimensions for a NACA 0012 airfoil for free 
stream M = .85. We plot the converged cp at the upper surface. Here we used 
Cartesian coordinates and our new switches in the x direction only. 

Figure 3 shows the convergence history in this case. 
In Figure 4, we show the results using generalized coordinates and the switches in 

the streamwise direction only. 
Figure 5 gives the convergence history in this case. 

0 

-2 

-10 6 

-12 
0 200 400 600 800 i1000 

ITERRT IION 
FIGURE 3 

Convergence history for an NACA 0012 at M = 0.85 

and 0 degrees angle of attack 
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a 200 300 00 00 0 
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FIGURE 5 
Convergence history for an NACA 0012 at M = 0.80 

and 0 degrees angle of attack 
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FIGURE 6 

Reverse flow input for a 10 percent thick parabolic arc 

airfoil at M = 0.85 and 0 degrees angle of attack 
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FIGURE 7 

Calculated pressure distribution on a 10 percent thick parabolic 
arc airfoil at M = 0.85 and 0 degrees angle of attack 
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FIGURE 8 
Convergence history for a 10 percent thick parabolic arc 

airfoil at M = 0.85 and 0 degrees angle of attack 
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FIGURE 9 
Pressure distribution on an NACA 0012 at M = 1.2 

and 0 degrees angle of attack 
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Next we consider a 10% parabolic arc, with M = .85, and input an exact solution 
to reverse flow, i.e., replace x by -x in the true steady solution. This nonphysical 
solution evolves according to our algorithm using the switching in the x direction 
with Cartesian coordinates. The correct steady state emerged, see Figures 6, and 7, 
with Figure 8 giving the convergence history. 

Finally, we took the NACA 0012 airfoil, with M = 1.2, using our switching in the 
x direction with Cartesian coordinates. The cp upper surface pressure plot gives the 
crisp fishtail shock seen in Figure 9. 
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